_ecture 3:
Modules

Modules — An OverviewI

The MODULE program unit provides the following facilities:

O

O

global object declaration;
procedure declaration (includes operator definition);
semantic extension;

ability to control accessibility of above to different
programs and program units;

ability to package together whole sets of facilities;

53

Module - General FormI

MODULE Nodul e
I TYPE Definitions

I dobal data
[

I etc ..
CONTAI NS
SUBROUTI NE Sub(. .)
| Executable stnts
CONTAI NS
SUBROUTI NE I nt1(..)

END SUBROUTI NE Int1

I etc.
SUBROQUTINE Intn(..)

END SUBRQUTI NE | nt 2n
END SUBROUTI NE Sub

I etc.
FUNCTI ON Funky(..)

| Executable stnts
CONTAI NS

I etc

END FUNCTI ON Funky
END MODULE Nodul e

MODULE < module name >
< declarations and specifications statements >
[CONTAINS
< definitions of module procedures > |
END [MODULE [< module name>]]

54

Modules — Global DataI

Fortran 90 implements a new mechanism to implement
global data:

O declare the required objects within a module;
O give them the SAVE attribute;
O USE the module when global data is needed.

For example, to declare pi as a global constant

MODULE Pye
REAL, SAVE :: pi = 3.142
END MODULE Pye

PROGRAM Area
USE Pye
IMPLICIT NONE
REAL :: r
READ*, r
PRINT*, "Area= " ,pi*r*r
END PROGRAM Area

MODULES should be placed before the program.

55

Module Global Data Examplel

For example, the following defines a very simple 100
element integer stack

MODULE stack
INTEGER, PARAMETER :: stack_size = 100
INTEGER, SAVE :: store(stack_size), pos=0
END MODULE stack

and two access functions,

SUBROUTINE push(i)
USE stack
IMPLICIT NONE

END SUBROUTINE push
SUBROUTINE pop(i)
USE stack

IMPLICIT NONE

END SUBROUTINE pop

A main program can now call push and pop which simu-
late a 100 element INTEGER stack — this is much neater
than using COMMON block.

56

Visualisation of Global Storagel

MODULE St ack

| NTEGER, PARAMETER :: stack_size = 100

| NTEGER, SAVE :: store(stack_size), pos =0
END MODULE St ack

A AN
SUBROUM NE Push(i) SUBRQUTI NE Pop(i)
USE St ack USE St ack
I etc I etc
END SUBROUTI NE Push END SUBROUTI NE Pop

Both procedures access the same (global) data in the
MODULE.

57

Modules — Procedure Encapsulationl

Module procedures are specified after the CONTAINS sep-
arator,

MODULE related_procedures

IMPLICIT NONE

! INTERFACEs of MODULE PROCEDURES do
! not need to be specified they are
! Yalready present’
CONTAINS

SUBROUTINE sub1(A,B,C)

! Can see Sub2’s INTERFACE

END SUBROUTINE subil
SUBROUTINE sub2(time,dist)
I Can see Subl’s INTERFACE

END SUBROUTINE sub2
END MODULE related_procedures

The main program attaches the procedures by
use-association

PROGRAM use_of_module
USE related_procedures ! includes INTERFACES

CALL sub1((/1.0,3.14,0.57/),2,’Yobot?)
CALL sub2(t,d)

END PROGRAM use_of_module

sub1l can call sub2 or vice versa.

58

Encapsulation - Stack exampIeI

We can also encapsulate the stack program,

MODULE stack
IMPLICIT NONE
INTEGER, PARAMETER :: stack_size = 100

INTEGER, SAVE :: store(stack_size), pos=0
CONTAINS

SUBROUTINE push(i)
INTEGER, INTENT(IN) :: i

END SUBROUTINE push
SUBROUTINE pop(i)
INTEGER, INTENT(OUT) :: i

END SUBROUTINE pop
END MODULE stack

Any program unit that includes the line:

USE stack

CALL push(2); CALL push(6);
CALL pop(i);

can access pop and push therefore use the 100 element
global integer stack.

59

Modules — Object Based Programmingl

We can write a module that allows a derived type to
behave in the same way as an intrinsic type. The module
can contain:

O the type definitions,

O constructors,

O overloaded intrinsics,

O overload set of operators,
O other related procedures

An example of such a module is the varying string mod-
ule which is to be an ancillary standard.

60

Derived Type Constructorsl

Derived types have in-built constructors, however, it is
better to write a specific routine instead.

Purpose written constructors can support default values
and will not change if the internal structure of the type
is modified. It is also possible to hide the internal details

of the type:

MODULE ThreeDee
IMPLICIT NONE
TYPE Coords_3D
PRIVATE
REAL :: x, y, z
END TYPE Coords_3D
CONTAINS
TYPE(Coords_3D) FUNCTION Init_CoordS_BD(X,y,Z)
REAL, INTENT(IN), OPTIONAL :: x,y,z
I Set Defaults
Init_Coords_3D = Coords_3D(0.0,0.0,0.0)
IF (PRESENT(x)) Init_Coords_3D)x = x
IF (PRESENT(y)) Init_Coords_3Djy =y
IF (PRESENT(z)) Init_Coords_3D%z = z
END FUNCTION Init_Coords_3D
END MODULE ThreeDee

If an argument is not supplied then the corresponding
component of Coords_3D is set to zero.

61

Generic Interfaces I

Most intrinsics are generic in that their type is deter-
mined by their argument(s). For example, the generic
function ABS(X) comprises the specific functions:

O CABS — called when X is COMPLEX,
O ABS — called when X is REAL,
O TIABS — called when X is INTEGER,

These specific functions are called the overload set.

A user may define his own overload set in an INTERFACE
block:

INTERFACE CLEAR

MODULE PROCEDUE clear_int
MODULE PROCEDUE clear_real
END INTERFACE ! CLEAR

The generic name, CLEAR, is associated with specific
names clear_int and clear_real (the overload set).

62

Generic Interfaces - ExampIeI

The full module would be

MODULE Schmodule
IMPLICIT NONE
INTERFACE CLEAR
MODULE PROCEDURE clear_int
MODULE PROCEDURE clear_real
END INTERFACE CLEAR
CONTAINS
SUBROUTINE clear_int(a)
INTEGER, DIMENSION(:), INTENT(INOUT) :: a
! code to do clearing
END SUBROUTINE clear_int
SUBROUTINE clear_real(a)
REAL, DIMENSION(:), INTENT(INOUT) :: a
! code to do clearing
END SUBROUTINE clear_real
END MODULE Schmodule

PROGRAM Main
IMPLICIT NONE
USE Schmodule
REAL :: prices(100)
INTEGER :: counts(50)
CALL CLEAR(prices) ! generic call
CALL CLEAR(counts) ! generic call
END PROGRAM Main

The first procedure invocation would be resolved with
clear _real and the second with clear_int.

63

Generic Interfaces - Commentryl

In order for the compiler to be able to resolve the ref-
erence, both module procedures must be unique:

O the specific procedure to be used is determined by

the number, type, kind or rank of the non-optional
arguments,

O the overload set of procedures must be unambigu-
ous with respect to their dummy arguments,

O default intrinsic types should not be used in generic
interfaces, use parameterised types.

Basically, by examining the argument(s), the compiler
calculates which specific procedure to invoke.

64

Overloading Intrinsic Proceduresl

When a new type is added, it is a simple process to add
a new overload to any relevant intrinsic procedures.

The following extends the LEN_TRIM intrinsic to return
the number of letters in the owners name for objects of
type HOUSE,

MODULE new_house_defs
IMPLICIT NONE

TYPE HOUSE
CHARACTER(LEN=16) :: owner
INTEGER :: residents
REAL :: value

END TYPE HOUSE
INTERFACE LEN_TRIM
MODULE PROCEDURE owner_len_trim
END INTERFACE
CONTAINS
FUNCTION owner_len_trim(ho)
TYPE(HOUSE), INTENT(IN) :: ho
INTEGER :: owner_len_trim
owner_len_trim = LEN_TRIM(ho’owner)
END FUNCTION owner_len_trim
! other encapsulated stuff
END MODULE new_house_defs

The user defined procedures are added to the existing
generic overload set.

65

Overloading Operators I

Intrinsic operators, such as -, = and *, can be overloaded
to apply to all types in a program:

O specify the generic operator symbol in an INTERFACE
OPERATOR statement,

O specify the overload set in a generic interface,

O declare the MODULE PROCEDURES (FUNCTIONS) which de-
fine how the operations are implemented.

These functions must have one or two non-optional ar-
guments with INTENT(IN) which correspond to monadic
and dyadic operators.

Overloads are resolved as normal.

66

Operator Overloading Examplel

The 'x’ operator can be extended to apply to the rational
number data type as follows:

MODULE rational_arithmetic
TYPE RATNUM
INTEGER :: num, den
END TYPE RATNUM
INTERFACE OPERATOR ()
MODULE PROCEDURE rat_rat,int_rat,rat_int
END INTERFACE
CONTAINS
FUNCTION rat_rat(l,r) I rat * rat
TYPE(RATNUM), INTENT(IN) :: 1,r

rat_rat = ...
FUNCTION int_rat(l,r) I int * rat
INTEGER, INTENT(IN) 0 1

TYPE(RATNUM) , INTENT(IN) :: r

FUNCTION rat_int(1l,r) | rat * int

TYPE(RATNUM) , INTENT(IN) :: 1
INTEGER, INTENT(IN) . o

END MODULE rational_arithmetic

The three new procedures are added to the operator
overload set allowing them to be used as operators in a
normal arithmetic expressions.

67

Example (Cont’d) I

With,

USE rational_arithmetic
TYPE (RATNUM) :: ra, rb, rc

we could write,

rc = rat_rat(int_rat(2,ra),rb)
but better:

rc = 2%ra*rb

And even better still add visibility attributes to force
user into good coding:

MODULE rational_arithmetic

TYPE RATNUM

PRIVATE

INTEGER :: num, den

END TYPE RATNUM

INTERFACE OPERATOR (%)

MODULE PROCEDURE rat_rat,int_rat,rat_int
END INTERFACE

PRIVATE :: rat_rat,int_rat,rat_int

638

Defining New Operatorsl

can define new monadic and dyadic operators. They
have the form,

< hame>.

Note:
O monadic operators have precedence over dyadic.

O names must be 31 letters (no numbers or under-
score) or less.

O basic rules same as for overloading procedures.

69

Defined Operator ExampIeI

For example, consider the following definition of the
.TWIDDLE. operator in both monadic and dyadic forms,

MODULE twiddle_op
INTERFACE OPERATOR (.TWIDDLE.)
MODULE PROCEDURE itwiddle, iitwiddle
END INTERFACE ! (.TWIDDLE.)
CONTAINS
FUNCTION itwiddle(i)
INTEGER itwiddle
INTEGER, INTENT(IN) :: i
itwiddle = -i*i
END FUNCTION
FUNCTION iitwiddle(i,j)
INTEGER iitwiddle
INTEGER, INTENT(IN) :: i,j
iitwiddle = -ix*j
END FUNCTION
END MODULE

The following

PROGRAM main

USE twiddle_op

print*, 2.TWIDDLE.5, .TWIDDLE.8, &
.TWIDDLE. (2.TWIDDLE.5), &
.TWIDDLE.2.TWIDDLE.5

END PROGRAM

produces

-10 -64 -100 20
70

Precedence I

O user defined monadic operators are most tightly
binding.

O user defined dyadic operators are least tightly bind-
ing.

For example,
.TWIDDLE.ex**j /a.TWIDDLE.b+c.AND.d
iS equivalent to

(((.TWIDDLE.e)**j)/a) .TWIDDLE. ((b+c) .AND.d)

71

User-defined Assignmentl

Assignment between two different user defined types
must be explicitly programmed; a SUBROUTINE with two
arguments specifies what to do,

O the first argument is the result variable and must
have INTENT(OUT);

O the second is the expression whose value is con-
verted and must have INTENT(IN).

Overloading the assignment operator differs from other
operators:

O assignment overload sets do not have to produce
an unambiguous set of overloads;

O later overloads override earlier ones if there is an
ambiguity;

72

Defined Assignment ExampleI

Should put in a module,

INTERFACE ASSIGNMENT (=)

MODULE PROCEDURE rat_ass_int, real_ass_rat

END INTERFACE
PRIVATE :: rat_ass_int, real_ass_rat

specify SUBROUTINES in the CONTAINS block:

SUBROUTINE rat_ass_int(var, exp)
TYPE (RATNUM), INTENT(QUT) :: var
INTEGER, INTENT(IN) :: exp
var/num = exp
varjden = 1

END SUBROUTINE rat_ass_int

SUBROUTINE real_ass_rat(var, exp)
REAL, INTENT(OUT) :: var
TYPE (RATNUM), INTENT(IN) :: exp
var = REAL(exp’/num) / REAL(explden)

END SUBROUTINE real_ass_rat

Wherever the module is used the following is

ra = 50
X = rb*rc

for real x.

valid:

73

Restricting VisibilityI

O Objects in a MODULE can be given visibility attributes:

PRIVATE :: rat_ass_int, real_ass_rat
PRIVATE :: rat_int, int_rat, rat_rat
PUBLIC :: OPRATOR(*)

PUBLIC :: ASSIGNMENT (=)

only allows access to symbolic versions of multiply
and assignment (* and =).

O This allows the internal structure of a module to
be changed without modifying the users program.

O default visibility is PUBLIC, this can be reversed by a
PRIVATE statement.

O individual declarations can also be attributed,

INTEGER, PRIVATE :: Intern

74

Derived Types with Private Componentsl

The type RATNUM is declared with PRIVATE internal struc-
ture,

TYPE RATNUM

PRIVATE

INTEGER :: num, den
END TYPE RATNUM

The user is unable to access specific components,

TYPE (RATNUM) :: splodge
splodge = RATNUM(2,3) ! invalid
splodge/num = 2 ! invalid
splodgelden = 3 ! invalid

splodge = set_up_RATNUM(2,3) ! OK

! set_up_RATNUM must be module procedure
CALL Print_out_RATNUM(splodge)
! Print_out_RATNUM must be module procedure

this allows the internal representation of the type to be
changed:
TYPE RATNUM
PRIVATE

REAL :: numb
END TYPE RATNUM

75

Accessibility Example I

We can update our stack example,

MODULE stack
IMPLICIT NONE
PRIVATE
INTEGER, PARAMETER :: stack_size = 100
INTEGER, SAVE :: store(stack_size), pos = 0
PUBLIC push, pop
CONTAINS
SUBROUTINE push (i)
INTEGER, INTENT(IN) :: i
I as before
END SUBROUTINE push
SUBROUTINE pop(i)
INTEGER, INTENT(OUT) :: i
I as before
END SUBROUTINE pop
END MODULE stack

User cannot now alter the value of store Or pos.

76

Another Accessibility ExampIeI

The visibility specifiers can be applied to all objects in-
cluding type definitions, procedures and operators:

For example,

MODULE rational_arithmetic
IMPLICIT NONE
PUBLIC :: OPERATOR (*)
PUBLIC :: ASSIGNMENT (=)
TYPE RATNUM

PRIVATE

INTEGER :: num, den
END TYPE RATNUM
TYPE, PRIVATE :: INTERNAL

INTEGER :: lhs, rhs
END TYPE INTERNAL
INTERFACE OPERATOR ()

MODULE PROCEDURE rat_rat,int_rat,rat_int
END INTERFACE ! OPERATOR (%)
PRIVATE rat_rat, int_rat, rat_int

! and so on

The type INTERNAL is only accessible from within the
module.

77

The USE Renames FacilityI

The USE statement names a module whose public defi-
nitions are to be made accessible.

Syntax:

USE < module-name > &
[,< new-name > => < use-name >...]

module entities can be renamed,
USE Stack, IntegerPop => Pop

The module object Pop is renamed to IntegerPop when
used locally.

78

USE ONLY Statement I

Another way to avoid name clashes is to only use those
objects which are necessary. It has the following form:

USE < module-name > [ONLY:< only-list >...]
The < only-list > can also contain renames (=>).
For example,

USE Stack, ONLY:pos, &
IntegerPop => Pop

Only pos and Pop are made accessible. Pop is renamed
to IntegerPop.

The ONLY statement gives the compiler the option of
including only those entities specifically named.

79

Semantic Extension Modulesl

The real power of the MODULE / USE facilities appears
when coupled with derived types and operator and pro-
cedure overloading to provide semantic extensions to
the language.

Semantic extension modules require:
O a mechanism for defining new types;
O a method for defining operations on those types;

O a method of overloading the operations so user can
use them in a natural way;

O a way of encapsulating all these features in such a
way that the user can access them as a combined
set;

O details of underlying data representation in the im-
plementation of the associated operations to be
kept hidden (desirable).

This is an Object Oriented approach.

80

